Electrical activity and calcium influx regulate ion channel development in embryonic Xenopus skeletal muscle.
نویسندگان
چکیده
The development of electrical excitability involves complex coordinated changes in ion channel activity. Part of this coordination appears to be due to the fact that the expression of some channels is dependent on electrical activity mediated by other channel types. For example, we have previously shown that normal potassium current development in embryonic skeletal muscle cells of the frog Xenopus laevis is dependent on sodium channel activity. To examine the interrelationships between the development of different ionic currents, we have made a detailed study of electrical development in cultured Xenopus myocytes using whole-cell patch-clamp recording. The initial expression of potassium, sodium, and calcium currents is followed by a brief period during which the densities of potassium currents decrease, while at the same time sodium and calcium current densities continue to increase, which may increase electrical excitability during this time. The normal developmental increase in both potassium and sodium currents is inhibited by the sodium channel blocker tetrodotoxin, suggesting that electrical activity normally stimulates the expression of both these currents. These effects of electrical activity appear to be mediated via activation of voltage-gated calcium channels. We suggest that the developmental acquisition of sodium and calcium channels by these cells, possibly coupled with a transient decrease in potassium current density, lead to an increase in electrical excitability and calcium entry, and that this calcium entry provides a critical developmental cue controlling the subsequent development of mature electrical properties.
منابع مشابه
Selective regulation of xSlo splice variants during Xenopus embryogenesis.
Calcium-activated potassium channels regulate excitability of the adult nervous system. In contrast, little is known about the contribution of calcium-activated potassium channels to excitability of the embryonic nervous system when electrical membrane properties and intracellular calcium levels show dramatic changes. Embryonic Xenopus spinal neurons exhibit a well-characterized developmental p...
متن کاملIncreased calcium influx in dystrophic muscle
We examined pathways which might result in the elevated resting free calcium [( Ca2+]i) levels observed in dystrophic mouse (mdx) skeletal muscle fibers and myotubes and human Duchenne muscular dystrophy myotubes. We found that mdx fibers, loaded with the calcium indicator fura-2, were less able to regulate [Ca2+]i levels in the region near the sarcolemma. Increased calcium influx or decreased ...
متن کاملDevelopmental mapping of small-conductance calcium-activated potassium channel expression in the rat nervous system
Early electrical activity and calcium influx regulate crucial aspects of neuronal development. Small-conductance calcium-activated potassium (SK) channels regulate action potential firing and shape calcium influx through feedback regulation in mature neurons. These functions, observed in the adult nervous system, make them ideal candidates to regulate activity- and calcium-dependent processes i...
متن کاملRegulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملIon channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells.
At specific stages of development, nerve and muscle cells generate spontaneous electrical activity that is required for normal maturation of intrinsic excitability and synaptic connectivity. The patterns of this spontaneous activity are not simply immature versions of the mature activity, but rather are highly specialized to initiate and control many aspects of neuronal development. The configu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 6 شماره
صفحات -
تاریخ انتشار 1995